Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Drug Deliv Rev ; 182: 114109, 2022 03.
Article in English | MEDLINE | ID: mdl-34998902

ABSTRACT

Needle-free jet injectors have been proposed as an alternative to injections with hypodermic needles. Currently, a handful of commercial needle-free jet injectors already exist. However, these injectors are designed for specific injections, typically limited to large injection volumes into the deeper layers beneath the skin. There is growing evidence of advantages when delivering small volumes into the superficial skin layers, namely the epidermis and dermis. Injections such as vaccines and insulin would benefit from delivery into these superficial layers. Furthermore, the same technology for small volume needle-free injections can serve (medical) tattooing as well as other personalized medicine treatments. The research dedicated to needle-free jet injectors actuated by laser energy has increased in the last decade. In this case, the absorption of the optical energy by the liquid results in an explosively growing bubble. This bubble displaces the rest of the liquid, resulting in a fast microfluidic jet which can penetrate the skin. This technique allows for precise control over volumes (pL to µL) and penetration depths (µm to mm). Furthermore, these injections can be tuned without changing the device, by varying parameters such as laser power, beam diameter and filling level of the liquid container. Despite the published research on the working principles and capabilities of individual laser-actuated jet injectors, a thorough overview encompassing all of them is lacking. In this perspective, we will discuss the current status of laser-based jet injectors and contrast their advantages and limitations, as well as their potential and challenges.


Subject(s)
Drug Delivery Systems/methods , Injections, Jet/methods , Lasers , Drug Delivery Systems/adverse effects , Drug Delivery Systems/instrumentation , Equipment Design , Injections, Jet/adverse effects , Injections, Jet/instrumentation , Insulin/administration & dosage , Microfluidics , Skin Physiological Phenomena , Vaccines/administration & dosage
2.
J Colloid Interface Sci ; 576: 322-329, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32447022

ABSTRACT

Real time visualization and tracking of colloidal particles with 3D resolution is essential for probing the local structure and dynamics in complex fluids. Although tracking translational motion of spherical particles is well-known, accessing rotational dynamics of such particles remains a great challenge. Here, we report a novel approach of using fluorescently labeled raspberry-like colloids with an optical anisotropy to concurrently track translational and rotational dynamics in 3 dimensions. The raspberry-like particles are coated by a silica layer of adjustable thickness, which allows tuning the surface roughness. The synthesis and applicability of the proposed method is demonstrated by two types of probes: rough and smoothened. The accuracies of measuring Mean Squared (Angular) Displacements are also demonstrated by using these 2 probes dispersed in 2 different solvents. The presented 3D trackable colloids offer a high potential for wide range of applications and studies, such as probing the dynamics of crystallization, phase transitions, biological interactions and the effect of surface roughness on diffusion.

SELECTION OF CITATIONS
SEARCH DETAIL
...